

BUSINESS CALCULUS

GENERAL FORMULAS

COST: C(x) = (fixed cost) + (variable cost)

PRICE-DEMAND: p = ax + b.

x is the number of items that can be sold at p per item.

REVENUE: R(x) = x * p = Demand * (Price demand)

PROFIT: P(x) = R(x) C(x) = Revenue - Cost

BREAK-EVEN POINT: C(x) = R(x)

The intersection between the graphs C(x) and R(x).

AVERAGE KEYWORD	MARGINAL KEYWORD
The average is obtained by dividing by demand x .	Marginal means derivative.

AVERAGE COST:
$$\overline{C}(x) = \frac{C(x)}{x}$$

MARGINAL COST:
$$C'(x) = \frac{d}{dx}(C(x))$$

AVERAGE REVENUE:
$$\overline{R}(x) = \frac{R(x)}{x}$$

MARGINAL REVENUE:
$$R'(x) = \frac{d}{dx}(R(x))$$

AVERAGE PROFIT:
$$\overline{P}(x) = \frac{P(x)}{x}$$

MARGINAL PROFIT:
$$P'(x) = \frac{d}{dx}(P(x))$$

Average marginal cost: $\overline{C'}(x) = \frac{\frac{d}{dx}(C(x))}{x}$

$$\mathbf{MARGINAL\ AVERAGE\ COST:}\ \overline{C}'(x) = \frac{d}{dx}\left(\frac{(C(x))}{x}\right)$$

AVERAGE MARGINAL REVENUE:
$$\overline{R'}(x) = \frac{\frac{d}{dx}(R(x))}{x}$$

$$\mathbf{MARGINAL\ AVERAGE\ REVENUE:}\ \overline{R}'(x) = \frac{d}{dx}\left(\frac{(R(x))}{x}\right)$$

COMPOUND INTEREST

If a **principal P** is invested at an **annual rate r** (in decimal) **compounded continuously**, then the amount A in the account after **t years** is given by

$$A = P \cdot e^{r \cdot t}$$

XXX

If a **principal** P is invested at an **annual rate** r (in decimal) **compounded** n **times per year**, then the amount A in the account after t **years** is given by

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{n \cdot t}$$

BUSINESS CALCULUS

GENERAL FORMULAS

ELASTICITY OF DEMAND

If the equation x = f(p) is the equation obtained after solving the price-demand equation for demand x, then the **elasticity of demand** is given by

$$E(p) = \frac{p \cdot f'(p)}{f(p)}$$

TYPES OF DEMAND

$\mathbf{E}(\mathbf{p})$	DEMAND	INTERPRETATION
0 < E(p) < 1	Inelastic	Demand is not sensitive to changes in price.
E(p) > 1	Elastic	Demand is sensitive to changes in price.
E(p) = 1	Unit	A percentage change in price produces the same percentage change in demand.

GINI INDEX

If y = f(x) is the equation of a Loretz curve, then

Gini Index =
$$\int_0^1 [x \quad f(x)] \cdot dx$$

The Gini Index is a number between 0 and 1.

CONSUMERS' SURPLUS

If $(\overline{x},\overline{p})$ is a point on the graph of the price-demand equation p=D(x) for a particular product, then the **consumers' surplus** at a price level of \bar{p} is

$$CS = \int_0^{\overline{x}} [D(x) \quad \overline{p}] \cdot dx$$

PRODUCERS' SURPLUS

If $(\overline{x}, \overline{p})$ is a point on the graph of the price-supply equation p = S(x) for a particular product, then the **producers' surplus** at a price level of \overline{p} is

$$PS = \int_0^{\overline{x}} [\overline{p} \quad S(x)] \cdot dx$$

