BUSINESS CALCULUS

COST: $C(x)=($ fixed cost $)+($ variable cost $)$

PRICE-DEMAND: $p=a x+b$.
x is the number of items that can be sold at $\$ p$ per item.

REVENUE: $R(x)=x * p=$ Demand * (Price demand)

PROFIT: $P(x)=R(x) \quad C(x)=$ Revenue - Cost

BREAK-EVEN POINT: $\quad C(x)=R(x)$

> The intersection between the graphs $C(x)$ and $R(x)$.

AVERAGE KEYWORD	MARGINAL KEYWORD
The average is obtained by dividing by demand x.	Marginal means derivative.

AVERAGE COST: $\bar{C}(x)=\frac{C(x)}{x}$
MARGINAL COST: $C^{\prime}(x)=\frac{d}{d x}(C(x))$
AVERAGE REVENUE: $\bar{R}(x)=\frac{R(x)}{x} \quad$ MARGINAL REVENUE: $R^{\prime}(x)=\frac{d}{d x}(R(x))$

AVERAGE PROFIT: $\bar{P}(x)=\frac{P(x)}{x}$
MARGINAL PROFIT: $P^{\prime}(x)=\frac{d}{d x}(P(x))$

> AVERAGE MARGINAL COST: $\overline{C^{\prime}}(x)=\frac{\frac{d}{d x}(C(x))}{x}$
> MARGINAL AVERAGE COST: $\bar{C}^{\prime}(x)=\frac{d}{d x}\left(\frac{(C(x))}{x}\right)$
> AVERAGE MARGINAL REVENUE: $\overline{R^{\prime}}(x)=\frac{\frac{d}{d x}(R(x))}{x}$
> MARGINAL AVERAGE REVENUE: $\bar{R}^{\prime}(x)=\frac{d}{d x}\left(\frac{(R(x))}{x}\right)$

COMPOUND INTEREST

$$
\begin{aligned}
& \text { If a principal } \mathbf{P} \text { is invested at an annual rate } \mathbf{r} \text { (in decimal) } \\
& \text { compounded continuously, then the amount } \mathrm{A} \text { in the account } \\
& \text { after } \mathbf{t} \text { years is given by } \\
& \qquad A=P \cdot e^{r \cdot t}
\end{aligned}
$$

If a principal \mathbf{P} is invested at an annual rate \mathbf{r} (in decimal) compounded n times per year, then the amount A in the account after \mathbf{t} years is given by

$$
A=P \cdot\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

@csusm_stemcenter

Tel:
STEM SC (N): (760) 750-4101
STEM SC (S): (760) 750-7324

BUSINESS CALCULUS

ELASTICITY OF DEMAND

If the equation $x=f(p)$ is the equation obtained after solving the price-demand equation for demand x, then the elasticity of demand is given by

$$
E(p)=\frac{p \cdot f^{\prime}(p)}{f(p)}
$$

TYPES OF DEMAND

$\mathbf{E}(\mathbf{p})$	DEMAND	INTERPRETATION
$0<E(p)<1$	Inelastic	Demand is not sensitive to changes in price.
$E(p)>1$	Elastic	Demand is sensitive to changes in price.
$E(p)=1$	Unit	A percentage change in price produces the same percentage change in demand.

GINI INDEX

If $y=f(x)$ is the equation of a Loretz curve, then

$$
\text { Gini Index }=\int_{0}^{1}\left[\begin{array}{ll}
x & f(x)
\end{array}\right] \cdot d x
$$

The Gini Index is a number between 0 and 1.

CONSUMERS' SURPLUS

If (\bar{x}, \bar{p}) is a point on the graph of the price-demand equation $p=D(x)$ for a particular product, then the consumers' surplus at a price level of \bar{p} is

$$
\mathrm{CS}=\int_{0}^{\bar{x}}[D(x) \quad \bar{p}] \cdot d x
$$

PRODUCERS' SURPLUS

If (\bar{x}, \bar{p}) is a point on the graph of the price-supply equation $p=S(x)$ for a particular product, then the producers' surplus at a price level of \bar{p} is

$$
\mathrm{PS}=\int_{0}^{\bar{x}}\left[\begin{array}{ll}
{[\bar{p}} & S(x)] \cdot d x
\end{array}\right.
$$

